Stranger (Science) Things: Nicotinamida pode auxiliar no tratamento dos “banguelas” como o Dustin

Por Michelle Tillmann Biz – Dpto. de Ciências Morfológicas / UFSC

Até pouco tempo atrás, a síndrome da Displasia Cleidocraniana (DCC) era praticamente desconhecida de muitos, até que Dustin conquistou corações mundo afora.

Dustin é um dos personagens principais da série “Stranger Things” que, além de muito carismático, chamou a atenção por algo inusitado para um garoto da sua idade: ele é “banguela”. O fato é que, assim como o personagem Dustin, o ator que o interpreta, Gaten Matarazzo, possui DCC.

A DCC é uma doença rara (uma pessoa afetada em cada um milhão de nascimentos), causada por um defeito no gene CBFA1/RUNX2, sendo, portanto, transmitida hereditariamente. Este gene é responsável pela regulação da diferenciação das células que formarão os ossos (osteoblastos). A síndrome afeta principalmente os ossos da face, crânio e clavícula. Dentre as características principais da DCC, estão a estatura baixa, pouco desenvolvimento da clavícula (em alguns casos até ausente), as junções entre ossos do crânio persistentemente abertas, região nasal com proporções reduzidas e aumento exagerado do diâmetro do crânio. No que tange ao desenvolvimento da face, observa-se a maxila e o dorso nasal pouco desenvolvidos e a projeção da mandíbula, fazendo-se necessárias inúmeras cirurgias para as correções esqueléticas. Até início de 2020, Gate já havia passado por quatro cirurgias, fato que partilha com seus fãs em seu perfil no instagram (@gatenm123).

Além das alterações esqueléticas, há, ainda, as alterações dentárias: há maior ocorrência da formação de dentes extras (supranumerários), além de um atraso na chegada dos dentes permanentes na cavidade oral (erupção dentária), motivo pelo qual Dustin é “banguela”, apesar de ser um jovem-adolescente.

Mas ao que parece, o tempo excessivo de “janelinha aberta” para os portadores de DCC poderá estar com os dias contados. Isso porque Cientistas Descobriram Que o uso de nicotinamida pode melhorar o tempo de erupção dos dentes permanentes em casos de DCC. Acompanhe o texto para entender mais sobre esta perspectiva da descoberta.

Os cientistas usaram um modelo animal de DCC muito conhecido: camundongos com mutação no gene RUNX2. Estes animais, assim como ocorre nos humanos, apresentam atraso na erupção dos dentes pois há uma redução do processo de reabsorção óssea (chamado de osteoclastogênese) que precisa ocorrer para permitir que o dente, que se desenvolve dentro dos ossos maxilares, chegue até a cavidade oral.

Para restabelecer a osteoclastogênese (e, portanto, a erupção dentária), os cientistas apostaram na nicotinamida, uma forma de vitamina B3 capaz de inibir a atividade de uma proteína chamada HDAC, que controla a atividade de vários genes, entre eles o RUNX2.

A osteoclastogênese é um processo regulado por proteínas que são produzidas pelos osteoblastos (como o fator estimulador de colônias 1 – CSF1), o ligante do receptor ativador do fator nuclear kappa B (RANKL) e a osteoprotegerina (OPG). Assim, alterações no gene RUNX2 alteram a capacidade dos osteoblastos em secretarem tais proteínas, e, por isso, diminui a osteoclastogênese.

Entretanto, ao utilizarem a nicotinamida, os cientistas observaram a restauração da osteoclastogênese pela mediação da expressão destas proteínas: houve um aumento significativo da expressão de RUNX2 e CSF1, e aumento da razão RANKL/OPG disponíveis. Assim, demonstraram o mecanismo molecular potencial da nicotinamida para o tratamento do atraso na erupção dentária.

Muito embora seja ainda um estudo preliminar em animais, a nicotinamida demonstra potencial para ser utilizada futuramente, em portadores de DCC. Vale levar em consideração que trata-se de uma substância já utilizada, em outras situações clínicas diferentes da DCC (tratamento do acne vulgar e afeções inflamatórias da pele, em cremes para clarear a pele, no tratamento da pelagra, como suplemento vitamínico), ou seja, não se trata de uma nova formulação que precisa ser ainda estudada, testada e validada pelos órgãos reguladores de novos fármacos, uma vez que já há segurança de sua utilização prévia, seguem-se os estudos para a confirmação da nova indicação de tratamento.

Para saber mais acesse o artigo original:

“Regeneração” da estrutura cristalina de esmalte: uma vista para o futuro?

Por Michelle Tillmann Biz – Dpto. de Ciências Morfológicas / UFSC

O dente é uma estrutura extremamente complexa composto por esmalte, dentina, cemento, osso alveolar, ligamento periodontal e polpa dentária. Destes tecidos, o mais peculiar é o esmalte por ser o tecido mais duro do corpo e um tecido que perde conexão com a célula que deu origem a ele. Deixe-me explicar!

O corpo possui quatro tecidos mineralizados: esmalte, dentina, cemento e osso. Estes tecidos são formados por uma mescla de matriz orgânica (água e proteínas) e matriz inorgânica (o cristal de hidroxiapatita (HA) formado basicamente por íons cálcio e fosfato e que dá a dureza a esta matriz. Três pontos principais diferem um tecido mineralizado do outro: quantidade de HA, tipos de proteínas presentes na matriz e, por fim, a forma como as matrizes orgânica e inorgânica, se organizam. Em relação a quantidade de HA, o esmalte é o mais duro de todos, seguido da dentina, osso e cemento (97%, 70%, 65% e 60% de HA respectivamente). E particularmente no esmalte, estes cristais se arranjam em prismas que se encontram paralelos entre si. Essa arquitetura única aliada com a quantidade de HA garante ao esmalte não só o fato de ser o tecido mais duro do corpo, mas também de resistência ao desgaste durante as forças da mastigação.

Figura 1: Sequência do nascimento de um dente. Em lilás são representados os ameloblastos e epitélio oral (A-B), note a origem comum destes dois tipos celulares (ectoderma), isso facilitará a fusão deles quando se aproximarem (B). Com a fusão, inicia-se um processo de morte celular (apoptose) que enfraquece o epitélio, e somado à pressão do dente faz romper o epitélio e o surgimento de dente na cavidade oral (C). Ao final, quando o dente estiver em posição na cavidade oral, o esmalte estará completamente desnudo de ameloblastos e o epitélio oral vai circundar o dente na região cervical formando a gengiva (D). Imagem adaptada de Avery & Chiego Jr., 2005.

Ainda, a maneira como o esmalte é formado (pelos ameloblastos, a célula responsável pela Continuar lendo

A presença de nervos sensitivos é importante para formação dos dentes

Por Michelle Tillmann Biz – Dpto. de Ciências Morfológicas / UFSC

O desenvolvimento de um organismo envolve um coordenado e complexo processo de interação entre células de diferentes tipos e origens, que culmina no desenvolvimento de tecidos e órgãos. A manutenção da homeostase (estado de equilíbrio do organismo), durante o processo de desenvolvimento, é muito importante para que o órgão alcance a sua adequada função completa. Assim, alguns estudos já demonstraram que a presença dos nervos fornece este microambiente de homeostase tecidual favorecendo a regulação do comportamento das células-tronco mesenquimais. Em alguns modelos, já se verificou que a “desnervação” (remoção do nervo de um determinado local) impacta o comportamento celular e o desenvolvimento de determinados órgãos. No que tange o desenvolvimento dos dentes, pela primeira vez Cientistas Descobriram Que os nervos sensitivos presentes na face possuem um papel crucial na homeostase durante o desenvolvimento do órgão dentário. Continuar lendo

A Odontologia brasileira é uma das melhores do mundo!

Por Filipe Modolo – Dpto. de Patologia, UFSC

A Odontologia do Brasil está entre as melhores do mundo. Essa afirmação, apesar de verdadeira, parece contraditória, pois nossas condições gerais de educação e saúde encontram-se em um nível bastante baixo. Como isso pode acontecer? Qual seria a origem de tanta contradição? Continuar lendo

Liberação lenta de Sinvastatina pode auxiliar o processo de regeneração pulpar

Por Michelle Tillmann Biz – Dpto. de Ciências Morfológicas / UFSC

Não é de hoje que os cientistas se empenham para encontrar alternativas mais biológicas para a restauração de dentes visando à regeneração pulpar (ver post anterior). Tudo que temos hoje em dia à disposição para a restauração de dentes em que a cárie já atingiu a polpa (tecido que dá a vitalidade e sensibilidade aos dentes, vide figura 1), é o uso de medicações e materiais sintéticos.

Figura 1: Tecidos que compõe o dente. Dentina, esmalte e cemento são tecidos mineralizados; enquanto a polpa dentária é o tecido que dá vitalidade e sensibilidade ao dente.

As medicações funcionam como uma alternativa para manter o tecido remanescente, mas não são capazes de promover a regeneração da polpa dentária, muitas vezes falhando no seu objetivo inicial. Nesse sentido, cientistas buscam alterativas biológicas para mediar o processo de regeneração desse tecido quando o mesmo for lesionado pela cárie. E é nesse contexto que um grupo brasileiro de CIENTISTAS DESCOBRIRAM QUE… a liberação lenta de sinvastatina, contida em arcabouços de quitosana, aumenta a quimiotaxia (atração) e o potencial de regeneração de células pulpares, podendo ser um biomaterial a ser considerado como uma alternativa para a estimulação da regeneração do complexo polpa-dentina. Continuar lendo

A saúde bucal da criança é um reflexo do comportamento dos pais

Por Filipe Modolo – Dpto. de Patologia, UFSC

Não é novidade para nenhum de nós que a família, principalmente os pais, são os grandes exemplos para os filhos. Também não é novidade que os adultos ensinam muito mais aos seus filhos pelas suas atitudes do que pelo seu discurso. No entanto, infelizmente muitos pais e familiares ainda se valem do provérbio “faça o que eu digo, mas não faça o que eu faço” na educação dos seus filhos. As consequências dessa forma de educação já foram bem estudadas na construção da relação da criança com a sociedade e com o mundo que a circunda pela psicologia, sociologia, antropologia entre outras. Mas as provas científicas de que essa forma de relação também afeta a saúde das crianças são relativamente recentes. Continuar lendo

Dor de dente: a teoria do “odontoblasto transdutor” ganha mais uma peça

Por Michelle Tillmann Biz – Dpto. de Ciências Morfológicas / UFSC

O dente é conhecido por ser um órgão formado por tecidos duros, sendo eles o esmalte, a dentina e o cemento (veja na Figura 1). Porém, em seu interior, protegido por esses tecidos duros, encontra-se um tecido mole, a polpa dentária. A polpa dentária é um tecido conjuntivo propriamente dito, como o que encontramos abaixo da nossa pele, sendo responsável pela nutrição celular, defesa e reparação, bem como a sensibilidade local. Sendo assim, a polpa dentária é onde encontramos a vitalidade de um dente. Um dente vital possui polpa dentária; um dente que não tem polpa (como os dentes que já tiveram tratamento de canal executado) são dentes desvitalizados. Dessa forma, a polpa dentária é o tecido responsável por toda a fisiologia do dente respondendo aos estímulos de dor, desencadeando a resposta inflamatória bem como a resposta de regeneração e reparação. Sem a polpa dentária, não temos mais esses estímulos. Continuar lendo