A saga dos cientistas que copiam a natureza: células-tronco artificiais! Será mesmo?

Por Marco Augusto Stimamiglio – Instituto Carlos Chagas – Fiocruz, Paraná

O uso das células-tronco em tratamentos clínicos da chamada medicina regenerativa se baseia sobretudo no potencial destas células em induzir a recuperação dos tecidos que são lesionados ou são acometidos por alguma doença que cause sua degeneração. As características e potencialidades das células-tronco são inúmeras, a depender de seu tecido de origem e do estágio de maturação que se encontre. 

Este blog já dedicou muitos dos seus textos descrevendo promissoras descobertas científicas sobre as células-tronco (veja exemplos aqui). Contudo, o uso destas células na medicina regenerativa enfrenta grandes desafios, seja pela diversidade que dificulta a uniformização da sua aplicação ou pela instabilidade durante seu cultivo e expansão em laboratório. É justamente por este motivo que os cientistas buscam maneiras de copiar as células-tronco e substituí-las por produtos de fabricação laboratorial, multiplicáveis e uniformes, por vezes chamados de células-tronco artificiais.

No ano de 2016, cientistas da Universidade da Carolina do Norte, nos EUA, desenvolveram uma espécie de versão sintética de célula-tronco cardíaca. Micropartículas que imitavam as células foram fabricadas em laboratório, utilizando o conteúdo secretado por células-tronco (conhecido como fatores parácrinos, que são sinais enviados entre as células de um tecido).

Continuar lendo

Organoides de cérebros humanos modernos com genes neandertais

Por Ricardo Castilho Garcez – Dpto. de Biologia Celular, Embriologia e Genética, UFSC

            Cientistas da Universidade da Califórnia (EUA) compararam o genoma de homens de Neandertal, que viveram na eurásia há 40.000 anos atrás, com o genoma de humanos modernos. Dentre as várias diferenças encontradas, chamou atenção uma variante do gene que codifica a proteína NOVA1. Para entender se essa proteína variante poderia contribuir para as diferenças existentes entre nosso cérebro e o de homens de Neandertal, esses cientistas produziram organoides cerebrais humanos (aglomerados celulares que recriam parte da estrutura e função do cérebro, também conhecidos como minicérebros), substituindo o gene da proteína NOVA1 moderna, pela variante de neandertal. Ou seja, produziram organoides cerebrais humanos que expressavam a versão neandertal da proteína NOVA1.

            Você ficou curioso para saber se a alteração de uma única proteína poderia mudar o desenvolvimento do nosso cérebro, aproximando-o do cérebro dos Neandertais?

Continuar lendo

Mini pulmões cultivados em laboratório são utilizados no combate à Covid19

Por Ricardo Castilho Garcez, Dpto. de Biologia Celular, Embriologia e Genética da UFSC.

Os organoides, minúsculas cópias de órgão humanos criadas em laboratório, passam a contribuir no enfrentamento da Covid19.  Pesquisadores da Weill Cornell Medicine (USA) desenvolveram organoides de pulmões e intestinos para estudar os mecanismos de infecção do vírus SARS-Cov2 (que causa Covid19) e testar possíveis medicamentos.

Os casos e mortes por Covid-19 continuam a aumentar em todo o mundo. Atualmente, a maioria dos modelos de estudo limita-se a utilização de células cultivadas e o uso de alguns animais de laboratório. Esses modelos ajudam muito, mas apresentam várias limitações. Em sistemas de cultivo de células isoladas, a complexidade do tecido e do órgão é perdida. Dados obtidos com animais de laboratório, muitas vezes não reproduzem o que ocorre na nossa espécie. O vírus  SARS-CoV-2 infecta principalmente o trato respiratório, mas quase 25% dos pacientes com Covid-19 também apresentam sintomas gastrointestinais, que estão associados aos casos mais graves.

O Dr. Shuibing Chen e o Dr. Robert Schwartz utilizaram células-tronco humanas de pluripotência induzida (iPSC) para Continuar lendo

“Regeneração” da estrutura cristalina de esmalte: uma vista para o futuro?

Por Michelle Tillmann Biz – Dpto. de Ciências Morfológicas / UFSC

O dente é uma estrutura extremamente complexa composto por esmalte, dentina, cemento, osso alveolar, ligamento periodontal e polpa dentária. Destes tecidos, o mais peculiar é o esmalte por ser o tecido mais duro do corpo e um tecido que perde conexão com a célula que deu origem a ele. Deixe-me explicar!

O corpo possui quatro tecidos mineralizados: esmalte, dentina, cemento e osso. Estes tecidos são formados por uma mescla de matriz orgânica (água e proteínas) e matriz inorgânica (o cristal de hidroxiapatita (HA) formado basicamente por íons cálcio e fosfato e que dá a dureza a esta matriz. Três pontos principais diferem um tecido mineralizado do outro: quantidade de HA, tipos de proteínas presentes na matriz e, por fim, a forma como as matrizes orgânica e inorgânica, se organizam. Em relação a quantidade de HA, o esmalte é o mais duro de todos, seguido da dentina, osso e cemento (97%, 70%, 65% e 60% de HA respectivamente). E particularmente no esmalte, estes cristais se arranjam em prismas que se encontram paralelos entre si. Essa arquitetura única aliada com a quantidade de HA garante ao esmalte não só o fato de ser o tecido mais duro do corpo, mas também de resistência ao desgaste durante as forças da mastigação.

Figura 1: Sequência do nascimento de um dente. Em lilás são representados os ameloblastos e epitélio oral (A-B), note a origem comum destes dois tipos celulares (ectoderma), isso facilitará a fusão deles quando se aproximarem (B). Com a fusão, inicia-se um processo de morte celular (apoptose) que enfraquece o epitélio, e somado à pressão do dente faz romper o epitélio e o surgimento de dente na cavidade oral (C). Ao final, quando o dente estiver em posição na cavidade oral, o esmalte estará completamente desnudo de ameloblastos e o epitélio oral vai circundar o dente na região cervical formando a gengiva (D). Imagem adaptada de Avery & Chiego Jr., 2005.

Ainda, a maneira como o esmalte é formado (pelos ameloblastos, a célula responsável pela Continuar lendo

O estresse pode causar o aparecimento prematuro dos cabelos brancos

Por Marco Augusto Stimamiglio, Instituto Carlos Chagas – Fiocruz/PR

A crença de que o estresse nos deixa de cabelos brancos é uma relação causa-efeito bastante antiga e popular. Entretanto, se esta relação é verdadeira e de que forma isso acontece tem permanecido um mistério. O conhecimento científico nos ensina que a cor do cabelo é determinada por células chamadas melanócitos, que produzem um pigmento conhecido como melanina. Estes melanócitos são originados a partir de células-tronco melanocíticas que vivem dentro do folículo piloso, na base do fio. Entretanto, à medida que envelhecemos, essas células-tronco desaparecem gradualmente. Assim, os cabelos que crescem dos folículos capilares que perderam as células-tronco melanocíticas possuem menos pigmento, o que os deixa com aparência acinzentada.

Entendido! Mas, qual seria a relação do estresse com a redução de pigmentação dos cabelos? Será que o estresse pode realmente causar o surgimento de cabelos brancos? O estresse afetaria diretamente as células-tronco melanocíticas?

Para responder a estes questionamentos, um grupo de cientistas liderados pelo Dr. Ya- Continuar lendo

A presença de nervos sensitivos é importante para formação dos dentes

Por Michelle Tillmann Biz – Dpto. de Ciências Morfológicas / UFSC

O desenvolvimento de um organismo envolve um coordenado e complexo processo de interação entre células de diferentes tipos e origens, que culmina no desenvolvimento de tecidos e órgãos. A manutenção da homeostase (estado de equilíbrio do organismo), durante o processo de desenvolvimento, é muito importante para que o órgão alcance a sua adequada função completa. Assim, alguns estudos já demonstraram que a presença dos nervos fornece este microambiente de homeostase tecidual favorecendo a regulação do comportamento das células-tronco mesenquimais. Em alguns modelos, já se verificou que a “desnervação” (remoção do nervo de um determinado local) impacta o comportamento celular e o desenvolvimento de determinados órgãos. No que tange o desenvolvimento dos dentes, pela primeira vez Cientistas Descobriram Que os nervos sensitivos presentes na face possuem um papel crucial na homeostase durante o desenvolvimento do órgão dentário. Continuar lendo

Sorrir de novo: o uso de células tronco no tratamento da paralisia facial

Por Michelle Tillmann Biz – Dpto. de Ciências Morfológicas / UFSC

O nervo facial é um nervo periférico responsável por fornecer mobilidade para os músculos de expressão facial (que nos fazem sorrir, por exemplo) e do pescoço. Esse nervo possui um longo segmento extra-ósseo (fora da proteção de cavidade óssea) possuindo, nesse trajeto, uma localização superficial na face. Por isso, é comumente afetado por lesões traumáticas, causando paralisia facial, com implicações graves para os pacientes. Continuar lendo